Examples of how to transform (encode) a qualitative (categorical) variable into a quantitative variable with scikit learn in python ?
Input matrix
Let's consider the following input matrix X:
from sklearn import preprocessingimport numpy as npX = np.array(('A','C','B','A','C','D','A'))
of shape
print(X.shape)(7,)
that can be reshaped:
X = X.reshape(-1,1)
returns
print(X.shape)(7, 1)
Encoding the elements of matrix X using the function OrdinalEncoder
To encode the elements of matrix X a solution is to use OrdinalEncoder:
enc = preprocessing.OrdinalEncoder(categories='auto')enc.fit(X)print( enc.transform(X) )
returns
[[0.][2.][1.][0.][2.][3.][0.]]
Encoding the elements of matrix X using the function OneHotEncoder
Another solution to encode the elements of matrix X using the function OneHotEncoder
enc = preprocessing.OneHotEncoder(categories='auto')enc.fit(X)print( enc.transform(X) )
returns
(0, 0) 1.0(1, 2) 1.0(2, 1) 1.0(3, 0) 1.0(4, 2) 1.0(5, 3) 1.0(6, 0) 1.0
To get a matrix just use toarray() :
print( enc.transform(X).toarray() )
gives here
[[1. 0. 0. 0.][0. 0. 1. 0.][0. 1. 0. 0.][1. 0. 0. 0.][0. 0. 1. 0.][0. 0. 0. 1.][1. 0. 0. 0.]]
