Examples of how to pad a numpy array in python:
Create a 2D array with numpy
Let's consider the following array:
\begin{equation}
A = \left( \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
\end{equation}
that can be implemented using numpy and python:
import numpy as np
A = np.arange(0,12)
A = A.reshape(4,3)
print(A)
gives
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
and
print( A.shape )
gives
(4, 3)
Pad a numpy array
To pad a numpy array in python, a solution is to use numpy.pad:
Pad with constant_values
Add a (1,1) pad with the value -99
B = np.pad(A, (1, 1), constant_values=-99)
gives
[[-99 -99 -99 -99 -99]
[-99 0 1 2 -99]
[-99 3 4 5 -99]
[-99 6 7 8 -99]
[-99 9 10 11 -99]
[-99 -99 -99 -99 -99]]
Add a (3,3) pad with the value -99
B = np.pad(A, (3, 3), constant_values=-99)
gives
[[-99 -99 -99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 0 1 2 -99 -99 -99]
[-99 -99 -99 3 4 5 -99 -99 -99]
[-99 -99 -99 6 7 8 -99 -99 -99]
[-99 -99 -99 9 10 11 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99 -99 -99]]
Add a (3,1) pad with the value -99
B = np.pad(A, (3, 1), constant_values=-99)
gives
[[-99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 -99 -99 -99 -99]
[-99 -99 -99 0 1 2 -99]
[-99 -99 -99 3 4 5 -99]
[-99 -99 -99 6 7 8 -99]
[-99 -99 -99 9 10 11 -99]
[-99 -99 -99 -99 -99 -99 -99]]
Pad with neareast value
Add a (1,1) pad with neareast value
B = np.pad(A, (1, 1), 'edge')
gives
[[ 0 0 1 2 2]
[ 0 0 1 2 2]
[ 3 3 4 5 5]
[ 6 6 7 8 8]
[ 9 9 10 11 11]
[ 9 9 10 11 11]]
and
print(B.shape)
gives
(6, 5)
Examples
Find pixel neighbourhood
Example of how to find the
B = np.pad(A, (1, 1), 'edge')
then sliced the matrix B to find the 8 neighbourhood pixels"
Right side
B[0:-2,0:-2]
B[1:-1,0:-2]
B[2:,0:-2]
gives
[[0 0 1]
[0 0 1]
[3 3 4]
[6 6 7]]
[[ 0 0 1]
[ 3 3 4]
[ 6 6 7]
[ 9 9 10]]
[[ 3 3 4]
[ 6 6 7]
[ 9 9 10]
[ 9 9 10]]
Middle Top and Bottom:
B[0:-2,1:-1]
B[2:,1:-1]
gives
[[0 1 2]
[0 1 2]
[3 4 5]
[6 7 8]]
[[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
[ 9 10 11]]
Left side
B[0:-2,2:]
B[1:-1,2:]
B[2:,2:]
gives
[[1 2 2]
[1 2 2]
[4 5 5]
[7 8 8]]
[[ 1 2 2]
[ 4 5 5]
[ 7 8 8]
[10 11 11]]
[[ 4 5 5]
[ 7 8 8]
[10 11 11]
[10 11 11]]
Add a frame to an image
from matplotlib import image
import matplotlib.pyplot as plt
img = image.imread("eiffel-tower.jpeg")
plt.imshow(img)
plt.show()
print(img.shape)
img1 = np.pad(img, ((100, 100), (200, 200), (0,0)), constant_values=0)
print(img1.shape)
plt.imshow(img1)
plt.savefig("pad_image_01.png", bbox_inches='tight', dpi=100)
plt.show()
img1 = np.pad(img, ((100, 100), (0, 0), (0,0)), constant_values=0)
print(img1.shape)
plt.imshow(img1)
plt.savefig("pad_image_02.png", bbox_inches='tight', dpi=100)
plt.show()
img1 = np.pad(img, ((0, 0), (200, 200), (0,0)), constant_values=0)
print(img1.shape)
plt.imshow(img1)
plt.savefig("pad_image_03.png", bbox_inches='tight', dpi=100)
plt.show()
img1 = np.pad(img, ((100, 100), (0, 0), (0,0)), 'edge')
print(img1.shape)
plt.imshow(img1)
plt.savefig("pad_image_04.png", bbox_inches='tight', dpi=100)
plt.show()