To perform a simple linear regression with python 3, a solution is to use the module called scikit-learn, example of implementation:

from sklearn import linear_modelimport matplotlib.pyplot as pltimport numpy as npimport random#----------------------------------------------------------------------------------------## Step 1: training dataX = [i for i in range(10)]Y = [random.gauss(x,0.75) for x in X]X = np.asarray(X)Y = np.asarray(Y)X = X[:,np.newaxis]Y = Y[:,np.newaxis]plt.scatter(X,Y)#----------------------------------------------------------------------------------------## Step 2: define and train a modelmodel = linear_model.LinearRegression()model.fit(X, Y)print(model.coef_, model.intercept_)#----------------------------------------------------------------------------------------## Step 3: predictionx_new_min = 0.0x_new_max = 10.0X_NEW = np.linspace(x_new_min, x_new_max, 100)X_NEW = X_NEW[:,np.newaxis]Y_NEW = model.predict(X_NEW)plt.plot(X_NEW, Y_NEW, color='coral', linewidth=3)plt.grid()plt.xlim(x_new_min,x_new_max)plt.ylim(0,10)plt.title("Simple Linear Regression using scikit-learn and python 3",fontsize=10)plt.xlabel('x')plt.ylabel('y')plt.savefig("simple_linear_regression.png", bbox_inches='tight')plt.show()
References
| Links | Site |
|---|---|
| Régression linéaire | wikipedia |
| sklearn.linear_model.LinearRegression | scikit |
| Linear Regression Example | scikit |
| Sklearn Linear Regression - Python | stackoverflow |
| polynomial regression using python | stackoverflow |
| Polynomial Regression | towardsdatascience.com |
| Python Implementation of Polynomial Regression | geeksforgeeks.org |
