How to select one or multiple columns in a pandas DataFrame in python ?

Published: October 29, 2019

DMCA.com Protection Status

Example of how to extract one or several columns of data in a pandas dataframe

Create a dataframe with pandas

Let's consider the csv file train.csv (that can be downloaded on kaggle). To read the file a solution is to use read_csv():

>>> import pandas as pd
>>> df = pd.read_csv('train.csv')
>>> df.shape
(1460, 81)

Get column names

>>> df.columns
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
       'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
       'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
       'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition', 'SalePrice'],
      dtype='object')

Print column names and associated indexes:

>>> for idx,column in enumerate(df.columns):
...     print(idx,column)
... 
0 Id
1 MSSubClass
2 MSZoning
3 LotFrontage
4 LotArea
5 Street
6 Alley
7 LotShape
8 LandContour
9 Utilities
10 LotConfig
11 LandSlope
12 Neighborhood
13 Condition1
14 Condition2
15 BldgType
16 HouseStyle
17 OverallQual
18 OverallCond
19 YearBuilt
20 YearRemodAdd
21 RoofStyle
22 RoofMatl
23 Exterior1st
24 Exterior2nd
25 MasVnrType
26 MasVnrArea
27 ExterQual
28 ExterCond
29 Foundation
30 BsmtQual
31 BsmtCond
32 BsmtExposure
33 BsmtFinType1
34 BsmtFinSF1
35 BsmtFinType2
36 BsmtFinSF2
37 BsmtUnfSF
38 TotalBsmtSF
39 Heating
40 HeatingQC
41 CentralAir
42 Electrical
43 1stFlrSF
44 2ndFlrSF
45 LowQualFinSF
46 GrLivArea
47 BsmtFullBath
48 BsmtHalfBath
49 FullBath
50 HalfBath
51 BedroomAbvGr
52 KitchenAbvGr
53 KitchenQual
54 TotRmsAbvGrd
55 Functional
56 Fireplaces
57 FireplaceQu
58 GarageType
59 GarageYrBlt
60 GarageFinish
61 GarageCars
62 GarageArea
63 GarageQual
64 GarageCond
65 PavedDrive
66 WoodDeckSF
67 OpenPorchSF
68 EnclosedPorch
69 3SsnPorch
70 ScreenPorch
71 PoolArea
72 PoolQC
73 Fence
74 MiscFeature
75 MiscVal
76 MoSold
77 YrSold
78 SaleType
79 SaleCondition
80 SalePrice

Extract one column of data

Example 1 of how to extract one column of data (for example "SalePrice"):

>>> df['SalePrice']
0       208500
1       181500
2       223500
3       140000
4       250000
5       143000
6       307000
7       200000
8       129900
9       118000
10      129500
11      345000
12      144000
13      279500
14      157000
15      132000
16      149000
17       90000
18      159000
19      139000
20      325300
21      139400
22      230000
23      129900
24      154000
25      256300
26      134800
27      306000
28      207500
29       68500
         ...  
1430    192140
1431    143750
1432     64500
1433    186500
1434    160000
1435    174000
1436    120500
1437    394617
1438    149700
1439    197000
1440    191000
1441    149300
1442    310000
1443    121000
1444    179600
1445    129000
1446    157900
1447    240000
1448    112000
1449     92000
1450    136000
1451    287090
1452    145000
1453     84500
1454    185000
1455    175000
1456    210000
1457    266500
1458    142125
1459    147500
Name: SalePrice, Length: 1460, dtype: int64

Example 2 using the pandas function loc:

>>> df.loc[:,'SalePrice']
0       208500
1       181500
2       223500
3       140000
4       250000
5       143000
6       307000
7       200000
8       129900
9       118000
10      129500
11      345000
12      144000
13      279500
14      157000
15      132000
16      149000
17       90000
18      159000
19      139000
20      325300
21      139400
22      230000
23      129900
24      154000
25      256300
26      134800
27      306000
28      207500
29       68500
         ...  
1430    192140
1431    143750
1432     64500
1433    186500
1434    160000
1435    174000
1436    120500
1437    394617
1438    149700
1439    197000
1440    191000
1441    149300
1442    310000
1443    121000
1444    179600
1445    129000
1446    157900
1447    240000
1448    112000
1449     92000
1450    136000
1451    287090
1452    145000
1453     84500
1454    185000
1455    175000
1456    210000
1457    266500
1458    142125
1459    147500
Name: SalePrice, dtype: int64

Example 3 using the pandas function iloc (Note: 'SalePrice' corresponds to 80):

>>> df.iloc[:,80]
0       208500
1       181500
2       223500
3       140000
4       250000
5       143000
6       307000
7       200000
8       129900
9       118000
10      129500
11      345000
12      144000
13      279500
14      157000
15      132000
16      149000
17       90000
18      159000
19      139000
20      325300
21      139400
22      230000
23      129900
24      154000
25      256300
26      134800
27      306000
28      207500
29       68500
         ...  
1430    192140
1431    143750
1432     64500
1433    186500
1434    160000
1435    174000
1436    120500
1437    394617
1438    149700
1439    197000
1440    191000
1441    149300
1442    310000
1443    121000
1444    179600
1445    129000
1446    157900
1447    240000
1448    112000
1449     92000
1450    136000
1451    287090
1452    145000
1453     84500
1454    185000
1455    175000
1456    210000
1457    266500
1458    142125
1459    147500
Name: SalePrice, dtype: int64

Extract several columns of data

>>> mycolumns = ['GrLivArea','SalePrice'] 
>>> df[mycolumns]
      GrLivArea  SalePrice
0          1710     208500
1          1262     181500
2          1786     223500
3          1717     140000
4          2198     250000
5          1362     143000
6          1694     307000
7          2090     200000
8          1774     129900
9          1077     118000
10         1040     129500
11         2324     345000
12          912     144000
13         1494     279500
14         1253     157000
15          854     132000
16         1004     149000
17         1296      90000
18         1114     159000
19         1339     139000
20         2376     325300
21         1108     139400
22         1795     230000
23         1060     129900
24         1060     154000
25         1600     256300
26          900     134800
27         1704     306000
28         1600     207500
29          520      68500
...         ...        ...
1430       1838     192140
1431        958     143750
1432        968      64500
1433       1792     186500
1434       1126     160000
1435       1537     174000
1436        864     120500
1437       1932     394617
1438       1236     149700
1439       1725     197000
1440       2555     191000
1441        848     149300
1442       2007     310000
1443        952     121000
1444       1422     179600
1445        913     129000
1446       1188     157900
1447       2090     240000
1448       1346     112000
1449        630      92000
1450       1792     136000
1451       1578     287090
1452       1072     145000
1453       1140      84500
1454       1221     185000
1455       1647     175000
1456       2073     210000
1457       2340     266500
1458       1078     142125
1459       1256     147500

[1460 rows x 2 columns]

Example 2 using loc:

>>> df.loc[:,mycolumns]
      GrLivArea  SalePrice
0          1710     208500
1          1262     181500
2          1786     223500
3          1717     140000
4          2198     250000
5          1362     143000
6          1694     307000
7          2090     200000
8          1774     129900
9          1077     118000
10         1040     129500
11         2324     345000
12          912     144000
13         1494     279500
14         1253     157000
15          854     132000
16         1004     149000
17         1296      90000
18         1114     159000
19         1339     139000
20         2376     325300
21         1108     139400
22         1795     230000
23         1060     129900
24         1060     154000
25         1600     256300
26          900     134800
27         1704     306000
28         1600     207500
29          520      68500
...         ...        ...
1430       1838     192140
1431        958     143750
1432        968      64500
1433       1792     186500
1434       1126     160000
1435       1537     174000
1436        864     120500
1437       1932     394617
1438       1236     149700
1439       1725     197000
1440       2555     191000
1441        848     149300
1442       2007     310000
1443        952     121000
1444       1422     179600
1445        913     129000
1446       1188     157900
1447       2090     240000
1448       1346     112000
1449        630      92000
1450       1792     136000
1451       1578     287090
1452       1072     145000
1453       1140      84500
1454       1221     185000
1455       1647     175000
1456       2073     210000
1457       2340     266500
1458       1078     142125
1459       1256     147500

[1460 rows x 2 columns]

Example 3 using iloc:

>>> df.iloc[:,[46,80]]
      GrLivArea  SalePrice
0          1710     208500
1          1262     181500
2          1786     223500
3          1717     140000
4          2198     250000
5          1362     143000
6          1694     307000
7          2090     200000
8          1774     129900
9          1077     118000
10         1040     129500
11         2324     345000
12          912     144000
13         1494     279500
14         1253     157000
15          854     132000
16         1004     149000
17         1296      90000
18         1114     159000
19         1339     139000
20         2376     325300
21         1108     139400
22         1795     230000
23         1060     129900
24         1060     154000
25         1600     256300
26          900     134800
27         1704     306000
28         1600     207500
29          520      68500
...         ...        ...
1430       1838     192140
1431        958     143750
1432        968      64500
1433       1792     186500
1434       1126     160000
1435       1537     174000
1436        864     120500
1437       1932     394617
1438       1236     149700
1439       1725     197000
1440       2555     191000
1441        848     149300
1442       2007     310000
1443        952     121000
1444       1422     179600
1445        913     129000
1446       1188     157900
1447       2090     240000
1448       1346     112000
1449        630      92000
1450       1792     136000
1451       1578     287090
1452       1072     145000
1453       1140      84500
1454       1221     185000
1455       1647     175000
1456       2073     210000
1457       2340     266500
1458       1078     142125
1459       1256     147500

[1460 rows x 2 columns]

The advantage of the iloc() function is to easily select several consecutive columns, example:

>>> df.iloc[:,76:80]
      MoSold  YrSold SaleType SaleCondition
0          2    2008       WD        Normal
1          5    2007       WD        Normal
2          9    2008       WD        Normal
3          2    2006       WD       Abnorml
4         12    2008       WD        Normal
5         10    2009       WD        Normal
6          8    2007       WD        Normal
7         11    2009       WD        Normal
8          4    2008       WD       Abnorml
9          1    2008       WD        Normal
10         2    2008       WD        Normal
11         7    2006      New       Partial
12         9    2008       WD        Normal
13         8    2007      New       Partial
14         5    2008       WD        Normal
15         7    2007       WD        Normal
16         3    2010       WD        Normal
17        10    2006       WD        Normal
18         6    2008       WD        Normal
19         5    2009      COD       Abnorml
20        11    2006      New       Partial
21         6    2007       WD        Normal
22         9    2008       WD        Normal
23         6    2007       WD        Normal
24         5    2010       WD        Normal
25         7    2009       WD        Normal
26         5    2010       WD        Normal
27         5    2010       WD        Normal
28        12    2006       WD        Normal
29         5    2008       WD        Normal
...      ...     ...      ...           ...
1430       7    2006       WD        Normal
1431      10    2009       WD        Normal
1432       8    2007       WD        Normal
1433       5    2008       WD        Normal
1434       5    2006       WD        Normal
1435       7    2008      COD       Abnorml
1436       5    2007       WD        Normal
1437      11    2008      New       Partial
1438       4    2010       WD        Normal
1439      11    2007       WD        Normal
1440       9    2008       WD        Normal
1441       5    2008       WD        Normal
1442       4    2009       WD        Normal
1443       5    2009       WD        Normal
1444      11    2007       WD        Normal
1445       5    2007       WD        Normal
1446       4    2010       WD        Normal
1447      12    2007       WD        Normal
1448       5    2007       WD        Normal
1449       8    2006       WD       Abnorml
1450       9    2009       WD        Normal
1451       5    2009      New       Partial
1452       5    2006       WD        Normal
1453       7    2006       WD       Abnorml
1454      10    2009       WD        Normal
1455       8    2007       WD        Normal
1456       2    2010       WD        Normal
1457       5    2010       WD        Normal
1458       4    2010       WD        Normal
1459       6    2008       WD        Normal

[1460 rows x 4 columns]

References