Pandas provides numerous useful tools to easily transform and manipulate data frames, including the ability to convert a series into a DataFrame. This tutorial will walk you through the process of transforming a series into a DataFrame using pandas.
Table of contents
Create a series with pandas
First, you'll need to import the necessary libraries. Start by importing pandas as pd:
import pandas as pd
Now that you have imported pandas, create your series object:
s = pd.Series([42, 30, 59, 7], index=["A", "B", "C", "D"])
returns
A 42
B 30
C 59
D 7
Checking the type
type(s)
returns
<class 'pandas.core.series.Series'>
Convert a series to a dataframe
To convert this series into a DataFrame, use the to_frame() method. This returns a DataFrame object with column names as the data values from your Series:
df = s.to_frame()
gives
0
A 42
B 30
C 59
D 7
Now, if we check the type:
type(df)
it will return
<class 'pandas.core.frame.DataFrame'>
Note: if you want to swap rows and columns, a solution is to do:
df = df.T
returns here
A B C D
0 42 30 59 7
References
Links | Site |
---|---|
pandas.Series.to_frame | pandas.pydata.org |
pandas.Series | pandas.pydata.org |
Series | pandas.pydata.org |