Examples of how to check if two columns are equal with pandas:
Create a dataframe with pandas
Let's create a dataframe with pandas
import pandas as pdimport numpy as npdata = np.random.randint(10, size=(5,2))columns = ['Score A','Score B']df = pd.DataFrame(data=data,columns=columns)data = np.random.randint(10, size=(5,1))df['Score C'] = pd.DataFrame(data=data)df['Score D'] = pd.DataFrame(data=data)print(df)
returns for example
Score A Score B Score C Score D0 5 4 7 71 5 9 7 72 1 2 6 63 5 2 5 54 4 4 4 4
Check if two columns are equal
To check if two columns are equal a solution is to use pandas.DataFrame.equals, example:
df['Score A'].equals(df['Score B'])
retruns
False
Note: that the following line is the same that above:
df.iloc[:,0].equals(df.iloc[:,1])
returns as well:
False
If we check for columns 'Score C' and 'Score D'
df['Score C'].equals(df['Score D'])
we found that columns are equal:
True
Same if we do:
df['Score A'].equals(df['Score A'])
returns:
True
Compare two columns
If you want to compare two columns elementwise, a solution is to do:
df = df.copy()df['Diff'] = np.where( df['Score A'] == df['Score B'] , '1', '0')print(df)
returns:
Score A Score B Score C Score D Diff0 5 4 7 7 01 5 9 7 7 02 1 2 6 6 03 5 2 5 5 04 4 4 4 4 1
here we added a column called diff (for difference) where 1 means same value in " Score A " and " Score B" else 0.
