Table of contents
Create synthetic data
First, let's generate artificial data and use it to create a Pandas dataframe.
import pandas as pd
import numpy as np
np.random.seed(42)
data = np.random.uniform(low=-9.0, high=100.0, size=(10,4))
df = pd.DataFrame(data=data, columns=['A','B','C','D']).round(1)
print(df)
The code above will generate:
A B C D
0 31.8 94.6 70.8 56.3
1 8.0 8.0 -2.7 85.4
2 56.5 68.2 -6.8 96.7
3 81.7 14.1 10.8 11.0
4 24.2 48.2 38.1 22.7
5 57.7 6.2 22.8 30.9
6 40.7 76.6 12.8 47.1
7 55.6 -3.9 57.2 9.6
8 -1.9 94.4 96.3 79.1
9 24.2 1.6 65.6 39.0
Using any
Checking for negative values in a Pandas dataframe can be done using the any() method along the axis 1:
(df < 0).any(axis=1)
returns
0 False
1 True
2 True
3 False
4 False
5 False
6 False
7 True
8 True
9 False
dtype: bool
Using min()
Another way to achieve this task is by making use of the min() method.
df.min(axis=1)
returns
0 31.8
1 -2.7
2 -6.8
3 10.8
4 22.7
5 6.2
6 12.8
7 -3.9
8 -1.9
9 1.6
dtype: float64