Examples of how to calculate the mean along a given axis with numpy in python
Create a random matrix with numpy
import numpy as np
data = np.random.randint(0,10,size=(3,3))
gives for exaple
array([[4, 1, 9],
[1, 6, 5],
[9, 9, 5]])
Calculate the mean along an axis with numpy
To calculate the mean along an axis with numpy, a solution is to use numpy.mean, example along axis=0
data.mean(axis=0)
gives
array([4.66666667, 5.33333333, 6.33333333])
Note: to round alement of a matrix with numpy a solution is to use numpy.matrix.round
np.round( data.mean(axis=0) , 2)
gives then
array([4.67, 5.33, 6.33])
Note: same as doing
data.sum(axis=0) / data.shape[0]
gives
array([4.66666667, 5.33333333, 6.33333333])
Another example along axis=1:
data.mean(axis=1)
gives
array([4.66666667, 4. , 7.66666667])
and
np.round( data.mean(axis=1) , 2)
gives
array([4.67, 4. , 7.67])
Note: same as doing
data.sum(axis=1) / data.shape[1]
gives
array([4.66666667, 4. , 7.66666667])
Calculate the mean using all elements of a matrix
data.mean()
gives
5.444444444444445
Note: same as doing
data.sum() / data.size
also returns
5.444444444444445