To calculate the inverse of a matrix in python, a solution is to use the linear algebra numpy method linalg. Example
\begin{equation}
A = \left( \begin{array}{ccc}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right)
\end{equation}
inverse matrix A_inv
\begin{equation}
A^{-1} = \left( \begin{array}{ccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
\end{equation}
>>> import numpy as np
>>> A = np.array(([1,3,3],[1,4,3],[1,3,4]))
>>> A
array([[1, 3, 3],
[1, 4, 3],
[1, 3, 4]])
>>> A_inv = np.linalg.inv(A)
>>> A_inv
array([[ 7., -3., -3.],
[-1., 1., 0.],
[-1., 0., 1.]])
Checking:
>>> A_inv.dot(A)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
References
Links | Site |
---|---|
Matrice inversible | wikipedia |
Linear algebra (numpy.linalg) | scipy doc |
Inverse of a matrix using numpy | stackoverflow |
Inverse a matrix in python | stackoverflow |
Python Inverse of a Matrix | stackoverflow |
Matrix Inversion: Finding the Inverse of a Matrix | purplemath |