Let's consider the normal (Gaussian) distribution with mean equal to 8 and standard deviation equal to 2:

To calculate a Gaussian density probability function at a given point in python, a solution is to do:
scipy.stats.norm.pdf(6,8,2)
returns:
0.13
Source code to create the plot:
import matplotlib.pyplot as pltimport scipy.statsimport numpy as npx = np.linspace(0, 16.0, 100)plt.plot(x,scipy.stats.norm.pdf(x,8,2))plt.plot([6,6],[0,scipy.stats.norm.pdf(6,8,2)],c='k')plt.plot([0,6],[scipy.stats.norm.pdf(6,8,2),scipy.stats.norm.pdf(6,8,2)],c='k')plt.scatter(6,scipy.stats.norm.pdf(6,8,2),c='k')plt.grid()plt.xlim(0,16)plt.ylim(0,0.25)plt.title('Loi normale (gaussienne)')plt.savefig("probability_normal_distribution.png")plt.show()
