How to Fill Values in an Array Between Two Index Arrays Using NumPy ?

Published: December 14, 2024

DMCA.com Protection Status

Introduction

Filling specific ranges of values into a NumPy array based on given start and end indexes is a common task in data analysis, image processing, and simulations. This article explains how to achieve this using NumPy's broadcasting capabilities through illustrative examples.

Note: This approach has been used to vectorize a research code and improve its performance. More details can be found How to Plot CloudSat 2B-CLDCLASS-LIDAR Product Using Python ?.

Example 1: Filling Values Between Two Indexes in a Matrix

Let's consider the problem where we have two arrays defining the start and end indexes of a range. The task is to fill a matrix with values between these indexes.

Problem Definition

We are given:

1
2
3
4
import numpy as np

start_idx = np.array([67, 67, 67, 62, 62, 63, 62, 62, 24, 24])
end_idx = np.array([70, 70, 70, 71, 71, 71, 71, 71, 26, 26])

The goal is to create a matrix and fill values in the columns between start_idx and end_idx for each row.

Step 1: Create a Matrix of Indexes Using meshgrid

1
2
3
4
5
6
7
8
9
x_idx_max = 10
y_idx_max = 200

x = np.arange(0, y_idx_max)
y = np.arange(0, x_idx_max)

xx, yy = np.meshgrid(x, y)

print(xx)

Output:

1
2
3
4
5
6
7
array([[  0,   1,   2, ..., 197, 198, 199],
       [  0,   1,   2, ..., 197, 198, 199],
       [  0,   1,   2, ..., 197, 198, 199],
       ...,
       [  0,   1,   2, ..., 197, 198, 199],
       [  0,   1,   2, ..., 197, 198, 199],
       [  0,   1,   2, ..., 197, 198, 199]])

The matrix xx represents column indices repeated across rows.

Step 2: Apply Broadcasting to Fill Values

Using broadcasting, we compare the start and end indexes with the column indices (xx) to create a boolean matrix:

1
2
heatmap = ((start_idx.reshape(x_idx_max, 1) <= xx) &
           (xx <= end_idx.reshape(x_idx_max, 1)))

For a specific row, you can observe the filled ranges:

1
print(heatmap[0, :])

Output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
array([False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False,  True,  True,  True,  True, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False])

Example 2: Filling Values Using One-Dimensional Arrays

This example demonstrates how to fill a matrix with ranges defined by two one-dimensional arrays.

Step 1: Define Start and End Index Arrays

1
2
3
4
5
import numpy as np

r = np.arange(12)[:, None]  # Creates a column vector
start = [0, 1, 2, 3, 4, 4, 3, 2, 1, 0]
end = [9, 8, 7, 6, 5, 5, 6, 7, 8, 9]

Step 2: Apply Broadcasting

Using broadcasting, compare each element in r with start and end:

1
2
3
out = ((start <= r) & (r <= end)).astype(int)

print(out)

Output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
       [1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 1, 0, 0, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 0, 0, 1, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
       [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

The result shows ranges of 1s for indices between start and end.

NumPy's broadcasting is a powerful tool for efficiently filling values in matrices based on index ranges. The examples presented illustrate how to solve such problems for both one-dimensional and two-dimensional scenarios, enabling seamless data manipulation in various applications.

References