Introduction
Filling specific ranges of values into a NumPy array based on given start and end indexes is a common task in data analysis, image processing, and simulations. This article explains how to achieve this using NumPy's broadcasting capabilities through illustrative examples.
Note: This approach has been used to vectorize a research code and improve its performance. More details can be found How to Plot CloudSat 2B-CLDCLASS-LIDAR Product Using Python ?.
Example 1: Filling Values Between Two Indexes in a Matrix
Let's consider the problem where we have two arrays defining the start and end indexes of a range. The task is to fill a matrix with values between these indexes.
Problem Definition
We are given:
1 2 3 4 | import numpy as np start_idx = np.array([67, 67, 67, 62, 62, 63, 62, 62, 24, 24]) end_idx = np.array([70, 70, 70, 71, 71, 71, 71, 71, 26, 26]) |
The goal is to create a matrix and fill values in the columns between start_idx
and end_idx
for each row.
Step 1: Create a Matrix of Indexes Using meshgrid
1 2 3 4 5 6 7 8 9 | x_idx_max = 10 y_idx_max = 200 x = np.arange(0, y_idx_max) y = np.arange(0, x_idx_max) xx, yy = np.meshgrid(x, y) print(xx) |
Output:
1 2 3 4 5 6 7 | array([[ 0, 1, 2, ..., 197, 198, 199], [ 0, 1, 2, ..., 197, 198, 199], [ 0, 1, 2, ..., 197, 198, 199], ..., [ 0, 1, 2, ..., 197, 198, 199], [ 0, 1, 2, ..., 197, 198, 199], [ 0, 1, 2, ..., 197, 198, 199]]) |
The matrix xx
represents column indices repeated across rows.
Step 2: Apply Broadcasting to Fill Values
Using broadcasting, we compare the start and end indexes with the column indices (xx
) to create a boolean matrix:
1 2 | heatmap = ((start_idx.reshape(x_idx_max, 1) <= xx) & (xx <= end_idx.reshape(x_idx_max, 1))) |
For a specific row, you can observe the filled ranges:
1 | print(heatmap[0, :]) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) |
Example 2: Filling Values Using One-Dimensional Arrays
This example demonstrates how to fill a matrix with ranges defined by two one-dimensional arrays.
Step 1: Define Start and End Index Arrays
1 2 3 4 5 | import numpy as np r = np.arange(12)[:, None] # Creates a column vector start = [0, 1, 2, 3, 4, 4, 3, 2, 1, 0] end = [9, 8, 7, 6, 5, 5, 6, 7, 8, 9] |
Step 2: Apply Broadcasting
Using broadcasting, compare each element in r
with start
and end
:
1 2 3 | out = ((start <= r) & (r <= end)).astype(int) print(out) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 | array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 0, 1, 1], [1, 1, 1, 0, 0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 1, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) |
The result shows ranges of 1s for indices between start
and end
.
NumPy's broadcasting is a powerful tool for efficiently filling values in matrices based on index ranges. The examples presented illustrate how to solve such problems for both one-dimensional and two-dimensional scenarios, enabling seamless data manipulation in various applications.
References
Links | Site |
---|---|
Fill in values between given indices of 2d numpy array | stackoverflow.com |
Fill values into an array given indexes array and values array in Numpy | stackoverflow.com |
meshgrid | numpy.org |